Introduction Contents

Introduction	2
Committees	4
Sponsors	5
Applied Thermodynamics in Scotland	7
Joseph Black (1728-1799)	7
James Watt (1736-1819)	8
John Leslie (1766-1832)	9
Thomas Graham (1805-1869)	10
William Rankine (1820-1872)	11
Lord Kelvin (1824-1907)	12
James Clerk Maxwell (1831-1879)	13
Peter Guthrie Tait (1831-1901)	14
David Boyle (1837-1891)	15
James Dewar (1842-1923)	15
Kenneth Denbigh (1911-2004)	16
Venue	17
Programme	19
Sunday Afternoon	19
Monday Morning	20
Monday Afternoon	21
Tuesday Morning	22
Tuesday Afternoon	23
Wednesday Morning	24
List of Posters	25

Introduction

It is with great pleasure that the International Steering Comittee, the local Organising committee and the University of Edinburgh welcome you to **ESAT 2024**, marking the **50**th **anniversary** of the European Symposium on Applied Thermodynamics series. When it started, in 1974, Europe was still divided in blocks and the conference took place in west Berlin. Since then, ESAT has been hosted by Northern, Southern, Eastern and Western European Countries to represent the diversity and richness of our culture. We will celebrate this with a special anniversary ceremony during our social dinner. We will also present the EFCE Michael L. Michelsen Award 2024 to Prof. Jean Noel Jaubert, who will give a speech entitled *"Some insights on the development of equations of state over the past 30 years*" and award three Helmut Knapp prizes to the best poster presenters.

ESAT is a truly European conference with a global flavour that proudly hosts contributions from all continents. As British scientists, we are particularly excited to celebrate our Association to European scientific schemes such as Horizon and continue a tradition of succesful collaborations. As a Scottish Institution, we are proud to celebrate the numerous Scottish scientists who have contributed to the field of Applied Thermodynamics, who built their strenght through mutual **collaborations**, such as those between Joseph Black and James Watt, Peter Tait and Lord Kelvin, James C. Maxwell and James Dewar. As the challenges we are facing, such as sustainability, energy transition and climate change, become ever more pressing, we need to collaborate and interact and we hope that ESAT 2024 will strengthen existing connections and foster new ones.

On behalf of the organizing and IS committee, welcome to Edinburgh!

The ESAT conference series

EDITION	Year	ORGANISER	LOCATION	COUNTRY
33 rd	2024	University of Edinburgh	Edinburgh	Scotland (UK)
32 nd	2022	TU Graz	Graz	Austria
31 st	2021	IFP Energies nouvelles	Paris / online	France
30 th	2018	The Czech Academy of Sciences	Prague	Czech Republic
29 th	2017	Polytechnic Univ. Bocarest	Bucarest	Romania
28 th	2015	Nat. Tech. Univ. Athens	Athens	Greece
27 th	2014	Eindhoven University of Technology	Eindhoven	The Netherlands
26 th	2012	TU Berlin and DECHEMA	Potsdam	Germany
25 th	2011	St. Petersburg State Univ, Russian Acad.Sci, The Mendeleev Russian chem. Soc.	St. Petersburg	Russia
24 th	2009	ETSE.Univ, Santiagp de Compostela	Santiago de Compostela	Spain
23 rd	2008	ENSIC-INPL, Nancy	Cannes	France
22 nd	2006	Tech. Univ. Denmark	Elsinore	Denmark
21 st	2005	Warsaw Univ. of Tech.	Jurata	Poland
20 th	2003	VDI-GVC, Dusseldorf + Bayer AG, Leverkusen + Univ. Kaiserslautem	Lahnstein	Germany
19 th	2002	Nat. Tech. Univ. Athens	Santorini	Greece
18 th	2000	ICT, Prague + ICPF, Prague	Kutna Hora	Czech Republic
17 th	1999	Univ. Porto + Univ. Aveiro	Vilamoura	Portugal
16 th	1997	Univ. Metz + ENSIC-INPL, Nancy	Pont-a-Mousson	France
15 th	1996	ICI, Runcom	Runcom	United Kingdom
14 th	1994	Nat. Tech. Univ. Athens	Marathon	Greece
13 th	1993	Univ. Marseille	Marseille	France
12 th	1991	Tech. Univ. Berlin	Berlin	Germany
11 th	1990	Tech. Univ. Denmark	Rungsted	Denmark
10 th	1988	Univ. Porto	Ofir	Portugal
9 th	1987	Norsk Hydro, Posgrunn	Bergen	Norway
8 th	1985	Univ. Trieste	Trieste	Italy
7 th	1983	Univ. Dortmund	Dortmund	Germany
6 th	1982	Institut Français du pétrol	Rueil Malmaison	France
5 ^m	1980	Linde AG, Munchen	Sachrang	Germany
4 th	1979	Shell, Amsterdam	Amsterdam	The Netherlands
3 nd	1978	Tech. Univ. Denmark	Lyngby	Denmark
2 nd	1976	Tech. Univ. Berlin	Berlin (West)	Germany
1 st	1974	Tech. Univ. Berlin	Berlin (West)	Germany

Committees

International Steering committee

Honorary members:

Jakob de Swaan Arons, Delft, The Netherlands

Dimitrios P. Tassios, Athens, Greece

Evelyne Neau, Marseille, France

Chair:

Eugénia A. Macedo, Porto, Portugal

Vice-chairs

Sabine Enders, Karlsruhe, Germany

Jean-Noel Jaubert, Nancy, France

Members

Karel Aim, Prague, Czech Republic

Ralf Dohrn, Leverkusen, Germany

Georgios M. Kontogeorgis, Lyngby, Denmark

Kostis Magoulas, Athens, Greece

Ivo Nezbeda, Prague, Czech Republic

Cor Peters, Abu Dhabi, United Arab Emirates / Eindhoven, The Netherlands

Catinca Secuianu, Bucharest, Romania

Alexey Victorov, Saint Petersburg, Russia

Nontas Voutsas, Athens, Greece

Jean-Charles de Hemptinne, Paris, France Ana Soto, Santiago de Compostela, Spain

Maria Grazia de Angelis, Edinburgh, Scotland

Tim Zeiner, Graz, Austria

Organizing Committee

Maria Grazia De Angelis, University of Edinburgh (Chair)

Eleonora Ricci, University of Edinburgh

Giulio Santori, University of Edinburgh

Martin Sweatman, University of Edinburgh

Felipe Perdomo, University of Edinburgh

Peter Cummings, Heriot-Watt University, Edinburgh, UK

Amparo Galindo, Imperial College London, UK

Claire Adjiman, Imperial College London, UK

Matteo Minelli, University of Bologna, Italy

Cara E. Schwarz, Stellenbosch University, South Africa

Local Support team

Kseniya Papchenko, Hasan Ismaeel, Thomas Fabiani, Maryam Zarghamidehagahani, Diane Reid, Megan Hammell, University of Edinburgh, UK

Sponsors

Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants, with sufficient characterization of composition and purity for the results to be reproduced. Naturally occurring systems that cannot be completely characterized will be considered only if they are of high practical interest and the work leads to significant new findings. In all cases, enough detail must be given to permit independent verification, and authors are also expected to provide physical or chemical interpretations of the results.

See more at: https://www.sciencedirect.com/journal/fluid-phase-equilibria

HENRY ROYCE

Applied Thermodynamics in Scotland

Scotland was the birthplace or workplace of many scientists who have contributed enormously to the field of applied thermodynamics. The section below, taken from open access sources such as Wikipedia and the Scottish Engineering hall of fame website, aims to pay a small tribute to their contribution to the advancement of this discipline and emphasise their mutual collaborations.

Joseph Black (1728-1799)

Joseph Black was a physicist and chemist, known for his discoveries of magnesium, latent heat, specific heat, and carbon dioxide. He was Professor of Anatomy and Chemistry at the University of Glasgow for 10 years from 1756, and Professor of Medicine and Chemistry at the University of Edinburgh from 1766. The chemistry buildings at the University of Edinburgh are named after him. Around 1750, while still a student, Black developed the *analytical balance*, which far exceeded the accuracy of any other balance of the

time and became an important scientific instrument. In 1761, he deduced that the application of heat to boiling water does not result in a rise in temperature of a water/steam mixture, but rather in an increase in the amount of steam. From these observations, he concluded that the heat applied must have combined with boiling water and become latent. *The theory of latent heat marks the beginning of thermodynamics*. Black also found that calcium carbonate could be heated or treated with acids to yield a gas (CO₂) he called "fixed air". In the last part of his career, he devoted himself exclusively to teaching. His lectures had a powerful effect in popularising chemistry and attendance at them even became a fashionable amusement. Black's grave is in Greyfriars Kirkyard in Edinburgh. In 2011, scientific equipment believed to belong to him was discovered during an archaeological dig at the University of Edinburgh. The session on *Carbon Capture and Storage* in **ESAT 2024** is dedicated to him.

James Watt (1736-1819)

James Watt was born in Greenock, near Glasgow. He was an inventor, mechanical engineer, and chemist who developed the *Watt steam engine* in 1776, which was fundamental to the Industrial Revolution.

After leaving school, he started working as a mathematical instrument maker and set up a workshop within the University of Glasgow in 1757. There, he became friends with chemist Joseph Black and economist Adam Smith.

There is a popular story that Watt was inspired to invent the *steam engine* by seeing a kettle boiling, the steam forcing the lid to rise and thus showing the power of steam. In reality, Watt did not invent the steam engine, but significantly improved the efficiency of the existing one by adding a separate condenser, consistent with the new principles of *thermal efficiency*. He came to realise the importance of *latent heat*, which his friend Joseph Black had previously discovered. The science of thermodynamics would not be formalised for nearly another 100 years.

Watt was a proficuous inventor, and, together with Matthew Boulton, who owned the Soho Manufactory works with some of the best iron workers in the world, formed a hugely successful partnership. Watt combined theoretical knowledge of science with the ability to apply it practically. The *watt*, the unit of power incorporated in the International System of Units is named after him. In 2009, the Bank of England released a £50 note depicting Boulton and Watt. Watt is commemorated by statuary in Princes Street, Edinburgh, while a painting *"James Watt contemplating the steam engine"* is visible at the National Gallery of Scotland. **ESAT 2024** has dedicated the *Electrochemical Process* session to him, hoping that his work can inspire a new Industrial Revolution, based on a new energy transition.

John Leslie (1766-1832)

Leslie was born in Largo (Fife). At 13 years of age he entered the University of St Andrews. On completion of his course in 1784, he studied divinity at the University of Edinburgh but gained no further degrees. He then worked as a private tutor, employing his spare time in experimental research and continued his physical studies, which resulted in numerous papers and in the publication (1804) of the *Experimental Inquiry into the Nature and Properties of Heat*, a work which gained him the Rumford Medal of the Royal Society of London.

In 1805, after having been rejected in several attempts to obtain a Chair at a Scottish university, Leslie was elected to succeed John Playfair in the chair of mathematics at Edinburgh, despite violent opposition from a party who accused him of heresy (he was an atheist). With reference to his invention (in 1810) of a process of *artificial ice-making*, he published in 1813 *A Short Account of Experiments and Instruments depending on the relations of Air to Heat and Moisture.* When John Playfair died in 1819, Leslie was promoted to the more congenial chair of natural philosophy, which he held until his death. Leslie's main contributions to physics were made by the help of the differential thermometer, which he was able to employ to study photometry, hygroscopy and the temperature of space. The **ESAT 2024** will honour him through the *Water and Aqueous* solutions session.

Robert Stirling (1790-1878)

Robert Stirling was born in Perthshire. Though he had a natural inclination for engineering, he began attending Edinburgh University in 1805 at the age of 15 to study divinity in hopes

of becoming a minister. He finished his studies there and continued at Glasgow University where he studied the classics, philosophy, theology and mathematics. Robert was licensed to preach in the Church of Scotland in 1816. Stirling is considered as one of the fathers of *hot air engines*. None of Stirling's experimental work or papers survived except for two model engines built by him when he was a Minister at Kilmarnock. At Edinburgh university Stirling's engine was

used in student classes and it is now on display in the Royal Scottish Museum. At Glasgow university the engine lay forgotten until discovered in 1847 by William Thomson, who later became Lord Kelvin. Thomson used the model in lectures to show that Stirling's machine worked on *a reversible cycle*. In 1816, at the age of 26 Stirling patented an engine which produced motive power from heated air. He continued to refine his ideas and, with his brother James, registered patents for improvements in 1827 and 1840. The principles of his revolutionary engine are increasingly being adopted and adapted as conventional fuels for internal combustion engines become scarcer. Today's applications include heat pumps; the NASA MOD I and II automotive engines; various hybrid electric vehicles; Stirling powered submarines - and many more. As conventional fuels become ever scarcer, the Scottish clergyman's ideas from almost 200 years ago are of more relevance today than ever. For his contributions, **ESAT 2024** has dedicated the *New models* session to him.

Thomas Graham (1805-1869)

Thomas Graham was born in Glasgow, the son of a textile manufacturer, who wanted him to join the Church of Scotland. Instead, he became a student at the University of Glasgow and developed a strong interest in chemistry. He later studied medicine at the University of Edinburgh. After taking a professorship at the University of London, he founded the Chemical Society of London in 1841.

Thomas Graham is known for his studies on the behavior of gases, which resulted in the formulation of two relationships,

now known as "*Graham's Laws*," regarding gas *diffusion* and effusion. In applied areas, Graham also made fundamental discoveries related to *dialysis*, a process used in research and industrial settings, as well as in modern health care. Graham's study of colloids resulted in his ability to separate colloids and crystalloids using a so-called "dialyzer", using technology that is a rudimentary forerunner of technology in modern kidney dialysis machines. These studies were foundational in the field known as *colloid chemistry*, and Graham is credited as one of its founders. He also proposed the association theory which claimed that the substances such as cellulose that we now know are *polymers* are composed from smaller molecules hold together by unknown forces. A statue of Graham in Glasgow was erected by the city in 1872. The **ESAT 2024** has decided to dedicate its session on *Transport Properties* to him.

William Rankine (1820-1872)

William John Macquorn Rankine, born in Edinburgh, was a mathematician and physicist. In 1836, he began to study a number of scientific topics at the University of Edinburgh, leaving it in 1838 without a degree and starting to work, as his father, in the Railways. There he developed a technique, the *Rankine's method*, for laying out railway curves. For Queen Victoria's visit to Scotland, he organised a large bonfire on Arthur's Seat, which served to initiate a chain of other bonfires across Scotland. From 1855 he was Professor of Civil Engineering and Mechanics at Glasgow University.

By 1849, he had discovered the relationship between saturated vapour pressure and temperature and between the temperature, pressure and density of gases, as well as for the latent heat of evaporation of a liquid. In 1851 he set out to calculate the *efficiency* of heat engines and used his theory to deduce the principle that the maximum efficiency possible is a function only of the two temperatures between which it operates. In 1853, he coined the term *potential energy*. From 1854, he made wide use of his thermodynamic function which he later realised was identical to the *entropy* of Clausius. He published a definition of energy in terms of capacity of performing work, which quickly became the standard general definition. In 1859 he proposed the *Rankine scale of temperature*, an absolute scale whose degree is equal to a Fahrenheit degree.

The *Rankine cycle* is an analysis of an ideal heat-engine with a condensor. One of King's Buidings campus buildings at the University of Edinburgh is named after him. The ESAT 2024 has decided to dedicate *Fluid Phase Equilibria* IV session to William Rankine for his studies on the relationship between thermodynamic quantities.

Lord Kelvin (1824-1907)

William Thomson, 1st Baron Kelvin, was a mathematician, mathematical physicist and engineer born in Belfast. He was the professor of Natural Philosophy at the University of

Glasgow for 53 years, where he undertook significant research and mathematical analysis of electricity, the formulation of the *first and second laws of thermodynamics*, and contributed significantly to unifying physics, which was then in its infancy of development as an emerging academic discipline.

Absolute temperatures are stated in units of kelvin in his honour. While the existence of a coldest possible temperature, absolute zero, was known before his work, Kelvin determined its correct

value as approximately –273.15 degrees Celsius. In 1892, he became the first British scientist to be elevated to the House of Lords. Thomson had a fruitful, though largely epistolary, collaboration with James P. Joule: Joule conducting experiments, Thomson analysing the results and suggesting further experiments. The collaboration produced discoveries including the Joule–Thomson effect.

He also had a career as an electrical telegraph engineer and inventor which earned him wealth, fame, and honours. For his work on the transatlantic telegraph project, he was knighted in 1866 by Queen Victoria, becoming Sir William Thomson. He had extensive maritime interests and worked on the mariner's compass.

He was ennobled in 1892 in recognition of his achievements in thermodynamics. Despite offers of elevated posts from several world-renowned universities, Kelvin refused to leave Glasgow, remaining until his retirement in 1899. Active in industrial research and development, he was recruited around 1899 by George Eastman to serve as vice-chairman of the board of the British company Kodak Limited.

The Hunterian Museum at the University of Glasgow has a permanent exhibition on the work of Kelvin, which includes many of his original papers, instruments, and other artefacts, including his smoking pipe.

ESAT 2024 honours his contributions to applied thermodynamics, and the bicentennial of his birth, through the session *Phase Equilibria* III.

James Clerk Maxwell (1831-1879)

James Clerk Maxwell was born in 1831 at 14 India Street, Edinburgh, now hosting a museum operated by the omonomious Foundation. Maxwell was sent to the Edinburgh Academy where he became friend with Peter Tait. In 1850, he left Scotland for Cambridge, where in 1854, graduated from Trinity in mathematics. Maxwell was Chair of Natural Philosophy at Marischal College, Aberdeen and at King's College, London; and in 1871 became the first Cavendish Professor of Physics in Cambridge.

He was responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and light as different manifestations of the same phenomenon and it is considered the "*second great unification in physics*" after the one of Newton. The unification of light and electrical phenomena led to his prediction of the existence of *radio waves*. Maxwell was the first to derive the *Maxwell–Boltzmann distribution*, a statistical mean of describing aspects of the kinetic theory of gases given the fraction of gas molecules moving at a specified velocity at any given temperature. His work on thermodynamics led him to devise the thought experiment that came to be known as *Maxwell's demon*, where the 2nd law of thermodynamics is violated by an imaginary being capable of sorting particles by energy. In 1871, he established *Maxwell's thermodynamic relations*, between the second derivatives of the thermodynamic potentials with respect to different thermodynamic variables. Maxwell proved that the rings of Saturn were made of small particles, winning the 1857 Adams prize, and providing an explanation that was confirmed by direct observations by the Voyager probe in the 1980s.

He is also known for presenting the first durable *colour photograph* in 1861 and he is responsible for modern *dimensional analysis*. Maxwell is also recognized for laying the groundwork for *chaos theory*. His discoveries helped usher in the era of modern physics, laying the foundation for such fields as *special relativity* and *quantum mechanics*. Many physicists regard Maxwell as the 19th-century scientist having the greatest influence on 20th-century physics.

ESAT 2024 decided to dedicate the session of *Machine Learning* to Maxwell, for his ability to utilise mathematical methods to describe physics laws.

Peter Guthrie Tait (1831-1901)

Tait was born in Dalkeith (Scotland) on 28 April 1831. He was educated at the Edinburgh Academy. He studied Mathematics and Physics at the University of Edinburgh, and then went to Peterhouse, Cambridge. Two years later he took up the professorship of mathematics at Queen's College, Belfast. His work on knot theory contributed to the eventual formation of *topology* as a mathematical discipline. His name is known in graph theory mainly for *Tait's conjecture* on cubic graphs. In 1860, Tait became professor

of natural philosophy at the University of Edinburgh. In 1871, he emphasised the significance and future importance of the principle of the dissipation of energy (2nd law of thermodynamics). Researches on "Charcoal Vacua" with James Dewar led him to see the true dynamical explanation of the Crookes radiometer in the large mean free path of the molecules of highly rarefied air. From 1879 to 1888, he engaged in difficult experimental investigations on the corrections required for thermometers operating at high pressure, for the benefit of the Challenger expedition for observing deep-sea temperatures, which led to the Tait equation (of state). Between 1886 and 1892 he published a series of papers on the foundations of the kinetic theory of gases. With Lord Kelvin, he collaborated in writing the well-known *Treatise on Natural Philosophy* an all-comprehensive treatise on physical science. He is buried in the second terrace down from Princes Street in the burial ground of St John's Episcopal Church, Edinburgh. Tait's house was at 17 Drummond Place, Edinburgh. He was a lifelong friend of James Clerk Maxwell. One of the chairs in the Department of Physics at the University of Edinburgh is the Tait professorship. Tait Road at the University of Edinburgh King's Buildings complex is named in his honour. The ESAT 2024 session Equations of state is dedicated to him.

David Boyle (1837-1891)

Born in Johnstone (Scotland), he emigrated to the USA at 21 and studied refrigeration texts at the San Francisco Mechanics' Institute. Boyle developed an improved form of ice making machine in a time when most ice was harvested in winter from lakes and rivers, transported long distances and stored for months. He is credited with being the first person to make use of *ammonia* as the working fluid in *a vapour-compression refrigeration system* reliable and commercially

successful and he established an *ice machine manufacturing* company in the very early days of mechanical refrigeration. He developed an improved form of compressor valve which became the standard way of achieving inlet and outlet control in many makes of compressors. Boyle's success with his ammonia compression system led to the rapid adoption of ammonia as the preferred refrigerant for industrial systems. This created a huge industry in America and Europe. Boyle's machines continued to be sold by his or successor companies after his death until about 1905. The **ESAT 2024** has named the session on *New Refrigerants* after him.

James Dewar (1842-1923)

James Dewar was born in Kincardine, Fife, in 1842. He studied Chemistry at the University of Edinburgh under Lyon Playfair, becoming his personal assistant. His investigations regarded the physiological action of light, the spectroscopic analysis of gases separated from atmospheric air at low temperatures, the electrical behaviour of substances at very low temperatures. His name is most widely associated to the liquefaction of the

permanent gases at temperatures close to absolute zero. In 1874 he discussed the "*Latent Heat of Liquid Gases*" before the British Association. He built a machine from which the liquefied gas could be used as a cooling agent, and obtained solid oxygen.

Around 1892, he had the idea of using vacuum-jacketed vessels for the storage of liquid gases – the *Dewar flask* – the invention for which he became famous, although he did not patent it, and lost a court case against Thermos who exploited the design commercially. In 1898, using a high-pressure machine based on the Joule–Thomson effect, he was able to collect liquid hydrogen for the first time, solid hydrogen following in 1899. He tried to liquefy the last remaining gas, helium, but owing to a number of factors, including a short

Page 15 | 32

supply of helium, Dewar was preceded by Onnes as the first person to produce liquid helium, who would later be awarded the Nobel Prize in Physics – Dewar was nominated several times, but never succeeded in winning. In 1905, he began to investigate the gasabsorbing powers of charcoal when cooled to low temperatures and applied his research to the creation of high vacuum, which was used for further experiments in atomic physics. Dewar continued his research work into the properties of elements at low temperatures, specifically low-temperature calorimetry, until the outbreak of World War I. The Royal Institution laboratories lost a number of staff to the war, and his research during and after the war mainly involved investigating surface tension in soap bubbles, reason for which the **ESAT 2024** has dedicated the *Surfactants* session to him.

Kenneth Denbigh (1911-2004)

Kenneth George Denbigh was a chemical engineer and scientific philosopher. He wrote

much on the issue of time in relation to thermodynamics. He was born in Luton and attended the University of Leeds graduating with a BSc in 1932. He then undertook his doctorate under Robert Whytlaw-Gray gaining a PhD in 1934. He worked for Imperial Chemical Industries (ICI) until 1938 when obtained a post of Lecturer in Chemistry at the University of Southampton. In the Second World War he was taken back into industry, as head of the laboratories for the Royal Ordnance Factory at Bridgwater. This led

him into his first hands-on experience with practical issues concerning thermodynamics. In 1948 he received a post lecturing at the Chemical Engineering Department at the University of Cambridge and this provided a stepping-stone to be Professor of Chemical Technology at the University of Edinburgh in 1955. This in turn took him to Imperial College, London in 1960. In 1966 his final move was to be principal of Queen Elizabeth College in London. The University of Edinburgh named the Kenneth Denbigh Building at King's Buildings in his honour. The School of Engineering of The University of Edinburgh awards the Kenneth Denbigh Medal in support of his scientific legacy. The Medal has been first established in 2023. Among his publications *The Thermodynamics of the Steady State* (1951), *Thermodynamics and the Sense of Time* (1953), *The Principles of Chemical Equilibrium* (1955), *Entropy in Relation to Incomplete Knowledge* (1985).

For his contributions to Chemical Engineering the **ESAT 2024** honors his memory with the Session on *Adsorption*.

Venue

Located at the foot of Edinburgh's iconic extinct volcano, Arthur's Seat, the John McIntyre

Conference Centre (JMCC) offers flexible state-of-the-art facilities.

Address: Pollock Halls, 18 Holyrood Park Rd, Edinburgh EH16 5AY.

Conference contact: esat2024@ed.ac.uk

Registration: <u>ESATregistration@ed.ac.uk</u>

Pollock Halls E-mail: <u>estates.helpdesk@ed.ac.uk</u>

Pollock Halls Phone: 0044 0131 651 2189

Accessibility: https://www.accessable.co.uk/the-university-of-edinburgh/accommodation-

residences/access-guides/pentland-west

Page 17 | 32

Hotels:

- Scholar Hotel <u>https://www.uoecollection.com/hotels/the-scholar/</u>
- Scott Hotel https://www.uoecollection.com/hotels/the-scott/
- Chancellors Court https://www.uoecollection.com/summer-stays-at-the-university-of-edinburgh/chancellors-court/

Catering options (meals during the Conference will be provided)

- Scholar Restaurant: Offers an informal evening à la carte service.
 <u>https://www.uoecollection.com/hotels/the-scholar/the-brasserie-lounge-bar/</u>
- JMCC Restaurant: Buffet. Breakfast: 07:30 10:00. Dinner: 18:00 20:00
- Arthur's Food & Drink: barista coffee, cookies, classic pub food and Crafty pizza alongside craft tap beers and a range of spirits, wines and seltzers. Monday – Sunday: 12:00-23:00. Serving food: 12:00-21:30

JMCC Floorplan

Programme

Sunday Afternoon

Sunday 9 June			
15:00	18:00	Registration	
		Pentland Theatre	
18:00	18:15	Conference Opening Prof. Maria Eugénia MACEDO, ESAT International Steering Committee Chair, Prof. Maria Grazia DE ANGELIS, ESAT 2024 Chair	
		Pentland Theatre	
		Michael M. Michelsen Award Lecture	
18.15	10.15	Sponsored by Fluid Phase Equilibria - an Elsevier Journal -	
10.15	19.15	Some insights on the development of equations of state over the past 20 years	
		some misignes on the development of equations of state over the past 50 years	
		Prof. Jean- Noel JAUBERT - Université de Lorraine - Michelsen Awardee 2024	
		Centro-JM Conference Centre	
19:15	21:00	Welcome Reception	

Monday Morning

Monday 10 June Morning					
Plenary talks - Pentland Theatre					
	Chairs: Ralf Dohrn, Sabine Enders				
08:30	Atomistic and Mesoscopic Modeling of Structure-Property Relations in Polymers 09:15			ations in Polymers	
		Prof. Doros N	. THEODOROU, National Technical Univ. of A	thens, Greece	
09:15	10:00	Exploi	ting active learning for porous material scre	pening	
10:00	10:30		Coffee Break		
		Carbon capture & Storage (CCS) I	Adsorption (the Kenneth Denbigh's	Molecular design: membranes &	
SESS	IONS	Chair: Sandra Kentish Pentland East	session) Chair: Tina Düren Prestonfield	Interfaces Chair: Doros Theodorou Pentland West	
		Modelling the phase behaviour of fluid	in estempera	Dynamically Switchable Monolayer	
		systems relevant for carbon-capture		Coatings: Improved Understanding of	
10:30	10:50	NOx	Keynote - On Adsorption Azeotropy and a	Group Contribution to Surface Tension	
		Dr. Andrew HASLAM , Imperial College London, UK	Classification Based on the Dual Site Langmuir Isotherm	Nicholas CRAVEN, Vanderbilt Univ. USA	
		A robust and efficient augmented free- water flash method for COwater-		Computational Design and Assessment of Mixed Matrix Membranes using Coarse-	
10:50	11:10	hydrocarbon mixtures		Grained Molecular Modeling	
		Dr. Dan NICHITA , Univ. de Pau et des Pays de l'Adour, France	Prof. Stefano BRANDANI , Univ. of Edinburgh, UK	Dr. Amro MOHAMED , Texas A&M University at Qatar, Qatar	
		Understanding the CO $_2$ Capture	Predicting Adsorption with 3D classical		
	14.20	Performance of amine-functionalized Silica and Carbon-based materials Using	Density Functional Theory based on PC-	behaviour of polymers on surfaces	
11:10	11:30	Molecular Simulations	SAFT		
		Prof. Lourdes VEGA, Khalifa Univ., UAE	Nadine THIELE , Univ. of Stuttgart, Germany	Prof. Vasileios KOUTSOS , Univ. of Edinburgh, UK	
		Integrating Theoretical Approaches for	Impact of Force Field Choice on	Decoding the Interplay Between Topology	
11.30	Profiling the Thermophysical Behavior of 11:50 DESs in Greenhouse Gas Treatments Dr. Fèlix LLOVELL , Univ. Rovira i Virgili, Spain	Profiling the Thermophysical Behavior of 11:50 DESs in Greenhouse Gas Treatments	Adsorption Predictions in MOF	Membranes During Humidity Induced	
11.50		Connaire McCREADY University of	Swelling Prof. Paola CARBONE Linix of		
		Spain	Strathclyde, UK	Manchester, UK	
11:50	12:00		Break		
CECC		Machine Learning I	Polymers I	Equations of State (the Peter G. Tait Session)	
3533	IUNS	Chair: Erich Müller	Chair: Michael Fischlschweiger	Chair: Ioannis Economou	
		Pentland	Prestonfield	Pentland West Can we hope for a revival of the	
		Improvement of diffusion coefficient	Predicting Gas Solubilities in Semi- crystalline Branched Polyolefin Systems	equations of state by coupling the Peng-	
12:00	12:20	prediction by active learning	with the Lattice-Cluster-Theory-EoS	Robinson model and an uncharted activity-coefficient model?	
		Zeno ROMERO, RPTU Kaiserslautern, Germany	Simon LEUBE , KIT, Germany	Prof. Romain PRIVAT , Univ. de Lorraine, France	
		Predicting solvation free energy in binary	High throughput screening of polymers:	Decorrelating equation of state	
12:20	12:40	solvents using graph neural networks	discovery	parameters with mixture data	
		Roel LEENHOUTS, KU Leuven, Belgium	Dr. Vittoria FANTAUZZO , Univ. of Liverpool, UK	Dr. Philipp REHNER , ETH Zurich, Switzerland	
		Thermodynamic Madeling of Dearly	Thermodynamics characterization of CO	Comparison of CP-PC-SAFT and CS-SAFT-	
		Specified Mixtures using NMR	sorption in polymers for CO ₂ transport	in systems of phenolic compounds,	
12:40	13:00	Spectroscopy and Machine Learning	applications	aromatic amines, acetophenone and	
		Dr. Thomas SPECHT , RPTU Kaiserslautern,			
		Germany	Virginia SIGNUKINI, Univ. of Bologna, Italy	Prot. IIya POLISHUK, Ariel Univ., Israel	
13:00	14:00		Lunch		

Monday Afternoon

Monday 10 June Afternoon				
SESS	IONS	Carbon capture & Storage (CCS) II - (The Joseph Black's session)	Molecular Design: Materials - sponsored by the Henry Royce Institute	Phase equilibria I
		Chair: Lourdes Vega Pentland East	Chair: Eleonora Ricci Prestonfield	Chair: Catinca Secuianu Pentland West
14:00	14:20	Exploring Thermophysical Properties of Phosphonium-Based Ionic Liquids in CO ₂ Capture Applications through a Multiscale Approach Dr. Sabrina RODRIGUEZ REARTES , Univ. Bovira i Vireili, Spain	From Chemical Drawing to Electronic Properties of Semiconducting Polymers in Bulk: A Tool for Chemical Discovery Dr. Hesam MAKKI , University of Liverpool, UK	Liquid-Liquid Equilibria of the Binary Systems Biodiesel/Glycerol and Biodiesel/Water Dr. Giulio SANTORI , Univ. of Edinburgh, UK
14:20	14:40	Enhanced Acid Gas Removal from Natural Gas Using Phase Change Amine Solvents Soultana TZIMA , National Technical Univ.	Thermodynamic of Phase Change Material Based on Stearic Acid with Graphene Nanoplatelets Dr. Yolanda SANCHEZ VICENTE , Northumbria University, UK	A Robust Setup for Efficient Characterization of Multicomponent Vapor-Liquid Equilibria Using Raman Spectroscopy - Marvin KASTERKE , RWTH Aachen Univ., Germany
14:40	15:00	Predictive Post-Combustion CO 2 Reactive Absorption Framework Combining Electrolyte Thermodynamics with Electronic Structure and Atomistic Simulation Methodologies Prof. William SMITH , Univ. of Guelph, Canada	Rational Design of Nanoparticle Surface Patterning for Directed Self-Assembly Dr. Thi VO , Johns Hopkins University, USA	Investigating the solute + solute interactions observed in ternary mixtures of CO ₂ + (n-alkanes and/or methyl esters and/or 1-alcohols and/or carboxylic acids) Prof. Cara SCHWARZ , Stellenbosch Univ., South Africa
15:00	15:20	Enrichment at fluid interfaces and its impact on mass transfer at elevated pressures	Sticky-MARTINI – A Reactive Coarse- Grained Model for Self-Assembly in Materials Synthesis	Analysis of the quality of published experimental and correlated binary and ternary VLE data. Proposal for an adequate planning of their experimental determination and correlation
			De Missel IODOF, Units of Charakerlander UN	PIOL AILONIO WARCILLA, UNIV. OF AILCAILE,
		Technology, Austria	Dr. Miguel JORGE , Univ. of Stratnelyde, UK	Spain
15:20	15:50	Technology, Austria	Coffee Break	Spain
15:20 SESS	15:50 IONS	Technology, Austria Transport properties (the Thomas Graham's Session) Chair: Amparo Galindo Pentland East	Coffee Break Polymers II Chair: Tim Zeiner Prestonfield	Spain New refrigerants (the David Boyle's session) Chair: Romain Privat Pentland West
15:20 SESS 15:50	15:50 IONS 16:10	Technology, Austria Transport properties (the Thomas Graham's Session) Chair: Amparo Galindo Pentland East Generalised dissipative particle dynamics with coupled energy and mass transfers: A coarse-grain framework for simulations of thermodiffusion	Coffee Break Polymers II Chair: Tim Zeiner Prestonfield A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymers	Spain New refrigerants (the David Boyle's session) Chair: Romain Privat Pentland West The Role of 4E Analysis and Thermodynamic Modeling in the Rational Design of Low-GWP Refrigerants as Drop- in Replacements
15:20 SESS	15:50 IONS 16:10	Technology, Austria Technology, Austria Transport properties (the Thomas Graham's Session) Chair: Amparo Galindo Pentland East Generalised dissipative particle dynamics with coupled energy and mass transfers: A coarse-grain framework for simulations of thermodiffusion Prof. Martin LISAL, Czech Academy of Sciences, Czech Republic	Dr. Omar ATIQ, Univ. of Bologna, Italy	Spain New refrigerants (the David Boyle's session) Chair: Romain Privat Pentland West The Role of 4E Analysis and Thermodynamic Modeling in the Rational Design of Low-GWP Refrigerants as Drop- in Replacements Carlos ALBÁ, Univ. Rovira i Virgili, Spain
15:20 SESS 15:50 16:10	15:50 IONS 16:10 16:30	Technology, Austria Technology, Austria Transport properties (the Thomas Graham's Session) Chair: Amparo Galindo Pentland East Generalised dissipative particle dynamics with coupled energy and mass transfers: A coarse-grain framework for simulations of thermodiffusion Prof. Martin LISAL, Czech Academy of Sciences, Czech Republic Entropy Scaling for Thermal conductivity with critical Enhancement -	Dr. Miguel JORGE, Univ. of Strathclyde, UK Coffee Break Polymers II Chair: Tim Zeiner Prestonfield A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymers Dr. Omar ATIQ, Univ. of Bologna, Italy Thermomechanical Modeling of Microstructural Influences on Gas Solubility in Semi-crystalline Polyethylenes	Spain New refrigerants (the David Boyle's session) Chair: Romain Privat Pentland West The Role of 4E Analysis and Thermodynamic Modeling in the Rational Design of Low-GWP Refrigerants as Drop- in Replacements Carlos ALBÁ, Univ. Rovira i Virgili, Spain A comprehensive approach to incorporating intermolecular dispersion into COSMO-RS model
15:20 SESS 15:50 16:10	15:50 IONS 16:10 16:30	Technology, Austria Technology, Austria Transport properties (the Thomas Graham's Session) Chair: Amparo Galindo Pentland East Generalised dissipative particle dynamics with coupled energy and mass transfers: A coarse-grain framework for simulations of thermodiffusion Prof. Martin LISAL, Czech Academy of Sciences, Czech Republic Entropy Scaling for Thermal conductivity with critical Enhancement - Julia BURKHARDT, Univ. of Stuttgart, Germany	Dr. Miguel JORGE, Univ. or Strathciyde, UK Coffee Break Polymers II Chair: Tim Zeiner Prestonfield A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymers Dr. Omar ATIQ, Univ. of Bologna, Italy Thermomechanical Modeling of Microstructural Influences on Gas Solubility in Semi-crystalline Polyethylenes Jana ZIMMERMANN, TU Clausthal, Germany	Spain New refrigerants (the David Boyle's session) Chair: Romain Privat Pentland West The Role of 4E Analysis and Thermodynamic Modeling in the Rational Design of Low-GWP Refrigerants as Drop- in Replacements Carlos ALBÁ, Univ. Rovira i Virgili, Spain A comprehensive approach to incorporating intermolecular dispersion into COSMO-RS model Daria GRIGORASH, TU Denmark
15:20 SESS 15:50 16:10 16:30	15:50 IONS 16:10 16:30 16:50	Technology, Austria Transport properties (the Thomas Graham's Session) Chair: Amparo Galindo Pentland East Generalised dissipative particle dynamics with coupled energy and mass transfers: A coarse-grain framework for simulations of thermodiffusion Prof. Martin LISAL, Czech Academy of Sciences, Czech Republic Entropy Scaling for Thermal conductivity with critical Enhancement - Julia BURKHARDT, Univ. of Stuttgart, Germany Application of the Significant Structure Theory for the Viscosity Modeling of Ionic Fluids	Dr. Miguel JORGE, Univ. or Strathciyde, UK Coffee Break Polymers II Chair: Tim Zeiner Prestonfield A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymers Dr. Omar ATIQ, Univ. of Bologna, Italy Thermomechanical Modeling of Microstructural Influences on Gas Solubility in Semi-crystalline Polyethylenes Jana ZIMMERMANN, TU Clausthal, Germany Molecular insight on Energetic Interactions and their Contribution to Diffusion of Small Molecules in Polyesters	Spain New refrigerants (the David Boyle's session) Chair: Romain Privat Pentland West The Role of 4E Analysis and Thermodynamic Modeling in the Rational Design of Low-GWP Refrigerants as Drop- in Replacements Carlos ALBÁ, Univ. Rovira i Virgili, Spain A comprehensive approach to incorporating intermolecular dispersion into COSMO-RS model Daria GRIGORASH, TU Denmark Biomass-derived working fluids as sustainable alternatives to classical absorption refrigeration systems
15:20 SESS 15:50 16:10	15:50 IONS 16:10 16:30 16:50	Technology, Austria Transport properties (the Thomas Graham's Session) Chair: Amparo Galindo Pentland East Generalised dissipative particle dynamics with coupled energy and mass transfers: A coarse-grain framework for simulations of thermodiffusion Prof. Martin LISAL, Czech Academy of Sciences, Czech Republic Entropy Scaling for Thermal conductivity with critical Enhancement - Julia BURKHARDT, Univ. of Stuttgart, Germany Application of the Significant Structure Theory for the Viscosity Modeling of Ionic Fluids Dr. Ricardo MACIAS-SALINAS, ESIQIE - Instituto Politecnico Nacional, Mexico	Dr. Miguel JORGE, Univ. of Strathclyde, UK Coffee Break Polymers II Chair: Tim Zeiner Prestonfield A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymers Dr. Omar ATIQ, Univ. of Bologna, Italy Thermomechanical Modeling of Microstructural Influences on Gas Solubility in Semi-crystalline Polyethylenes Jana ZIMMERMANN, TU Clausthal, Germany Molecular insight on Energetic Interactions and their Contribution to Diffusion of Small Molecules in Polyesters Dr. Kseniya PAPCHENKO, Univ. of Edinburgh, UK	Spain New refrigerants (the David Boyle's session) Chair: Romain Privat Pentland West The Role of 4E Analysis and Thermodynamic Modeling in the Rational Design of Low-GWP Refrigerants as Drop- in Replacements Carlos ALBÁ, Univ. Rovira i Virgili, Spain A comprehensive approach to incorporating intermolecular dispersion into COSMO-RS model Daria GRIGORASH, TU Denmark Biomass-derived working fluids as sustainable alternatives to classical absorption refrigeration systems Dr. Gabriel ZARCA, Univ. de Cantabria, Spain
15:20 SESS 15:50 16:10 16:30	15:50 IONS 16:10 16:30 16:50 17:00	Technology, Austria Transport properties (the Thomas Graham's Session) Chair: Amparo Galindo Pentland East Generalised dissipative particle dynamics with coupled energy and mass transfers: A coarse-grain framework for simulations of thermodiffusion Prof. Martin LISAL, Czech Academy of Sciences, Czech Republic Entropy Scaling for Thermal conductivity with critical Enhancement - Julia BURKHARDT, Univ. of Stuttgart, Germany Application of the Significant Structure Theory for the Viscosity Modeling of Ionic Fluids Dr. Ricardo MACIAS-SALINAS, ESIQIE - Instituto Politecnico Nacional, Mexico	Coffee Break Polymers II Chair: Tim Zeiner Prestonfield A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymers Dr. Omar ATIQ, Univ. of Bologna, Italy Thermomechanical Modeling of Microstructural Influences on Gas Solubility in Semi-crystalline Polyethylenes Jana ZIMMERMANN, TU Clausthal, Germany Molecular insight on Energetic Interactions and their Contribution to Diffusion of Small Molecules in Polyesters Dr. Kseniya PAPCHENKO, Univ. of Edinburgh, UK Break	Spain New refrigerants (the David Boyle's session) Chair: Romain Privat Pentland West The Role of 4E Analysis and Thermodynamic Modeling in the Rational Design of Low-GWP Refrigerants as Drop- in Replacements Carlos ALBÁ, Univ. Rovira i Virgili, Spain A comprehensive approach to incorporating intermolecular dispersion into COSMO-RS model Daria GRIGORASH, TU Denmark Biomass-derived working fluids as sustainable alternatives to classical absorption refrigeration systems Dr. Gabriel ZARCA, Univ. de Cantabria, Spain
15:20 SESS 15:50 16:10 16:30 16:50 17:00	15:50 IONS 16:10 16:30 16:50 17:00 18:30	Technology, Austria Transport properties (the Thomas Graham's Session) Chair: Amparo Galindo Pentland East Generalised dissipative particle dynamics with coupled energy and mass transfers: A coarse-grain framework for simulations of thermodiffusion Prof. Martin LISAL, Czech Academy of Sciences, Czech Republic Entropy Scaling for Thermal conductivity with critical Enhancement - Julia BURKHARDT, Univ. of Stuttgart, Germany Application of the Significant Structure Theory for the Viscosity Modeling of Ionic Fluids Dr. Ricardo MACIAS-SALINAS, ESIQIE - Instituto Politecnico Nacional, Mexico	Coffee Break Polymers II Chair: Tim Zeiner Prestonfield A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymers Dr. Omar ATIQ, Univ. of Bologna, Italy Thermomechanical Modeling of Microstructural Influences on Gas Solubility in Semi-crystalline Polyethylenes Jana ZIMMERMANN, TU Clausthal, Germany Molecular insight on Energetic Interactions and their Contribution to Diffusion of Small Molecules in Polyesters Dr. Kseniya PAPCHENKO, Univ. of Edinburgh, UK Break Poster session I - Afternoon Tea	Spain New refrigerants (the David Boyle's session) Chair: Romain Privat Pentland West The Role of 4E Analysis and Thermodynamic Modeling in the Rational Design of Low-GWP Refrigerants as Drop- in Replacements Carlos ALBÁ, Univ. Rovira i Virgili, Spain A comprehensive approach to incorporating intermolecular dispersion into COSMO-RS model Daria GRIGORASH, TU Denmark Biomass-derived working fluids as sustainable alternatives to classical absorption refrigeration systems Dr. Gabriel ZARCA, Univ. de Cantabria, Spain
15:20 SESS 15:50 16:10 16:30 16:50 17:00 18:30	15:50 IONS 16:10 16:30 16:50 17:00 18:30 20:00	Technology, Austria Transport properties (the Thomas Graham's Session) Chair: Amparo Galindo Pentland East Generalised dissipative particle dynamics with coupled energy and mass transfers: A coarse-grain framework for simulations of thermodiffusion Prof. Martin LISAL, Czech Academy of Sciences, Czech Republic Entropy Scaling for Thermal conductivity with critical Enhancement - Julia BURKHARDT, Univ. of Stuttgart, Germany Application of the Significant Structure Theory for the Viscosity Modeling of Ionic Fluids Dr. Ricardo MACIAS-SALINAS, ESIQIE - Instituto Politecnico Nacional, Mexico	Dr. Miguei JORGE, Univ. or Strathciyde, UK Coffee Break Polymers II Chair: Tim Zeiner Prestonfield A multi-scale modeling approach for the prediction of hydrogen transport properties in semi-crystalline polymers Dr. Omar ATIQ, Univ. of Bologna, Italy Thermomechanical Modeling of Microstructural Influences on Gas Solubility in Semi-crystalline Polyethylenes Jana ZIMMERMANN, TU Clausthal, Germany Molecular insight on Energetic Interactions and their Contribution to Diffusion of Small Molecules in Polyesters Dr. Kseniya PAPCHENKO, Univ. of Edinburgh, UK Break Poster session I - Afternoon Tea Break	Spain New refrigerants (the David Boyle's session) Chair: Romain Privat Pentland West The Role of 4E Analysis and Thermodynamic Modeling in the Rational Design of Low-GWP Refrigerants as Drop- in Replacements Carlos ALBÁ, Univ. Rovira i Virgili, Spain A comprehensive approach to incorporating intermolecular dispersion into COSMO-RS model Daria GRIGORASH, TU Denmark Biomass-derived working fluids as sustainable alternatives to classical absorption refrigeration systems Dr. Gabriel ZARCA, Univ. de Cantabria, Spain

Tuesday Morning

	Tuesday 11 June Morning				
	Plenary talks - Pentland Theatre				
	Chairs: Maria Eugenia Macedo, Alex Victorov				
08:30	09:15 Towards linking engineering workflows: Phase behavior, self-assembly, and fluctuations from thermodynamic perturbation theory and molecular simulation Prof. Walter CHAPMAN. Rice University. USA				
09:15	9:15 10:00 Applied Thermodynamics – Examples from Industrial Applications Dr. Stenhanie PEPER Bayer AG. Germany			pplications	
10:00	10:30		Coffee Break		
SESS	IONS	Phase equilibria II Chair: Felix Llovell	Electrochemical processes (the James Watt's session) Chair: Georgios Kontogeorgis Prestonfield	Surfactants (the James Dewar's session) Chair: Helena Passos Pentland West	
10:30	10:50	A Comparison of the UNIFAC Model vs. Graph Neural Network-based Models for the Prediction of Binary Vapor-Liquid Equilibria Egdar SANCHEZ MEDINA, Otto-von- Guericke Univ., Germany	Keynote-Molecular Simulation of Supercapacitors	Investigation of coalescence and Ostwald ripening of bubbles of varying sizes and distance using the Navier-Stokes- Korteweg approach Christian WACHSMANN , Univ. of Innsbruck, Austria	
10:50	11:10	Thermodynamic modelling of the systems involved in TEG dehydration of Natural Gas George TASIOS, National Technical Univ. Prof. Peter CUMMINGS, Heriot-Watt Univ,		Polarizable water models for dissipative particle dynamics simulations of micellar solutions Dr. Rachel HENDRIKSE , Durham Univ. UK	
11:10	11:30	Vapor-Liquid Equilibria for Tri-ethylene glycol in high pressure methane: Experiments and Modelling Prof. Sandra KENTISH , Univ. of Melbourne,	Alkali metal ion intercalation of molybdenite for enhanced CO ₂ reduction Eszter MADAI, Delft Univ. of Technology,	Computer-Aided Molecular Design of Surfactants Using Classical Density Functional Theory Pierre WALKER , California Institute of	
11:30	11:50	Australia Phase Equilibria and Fluid Properties Modelling for a Hydrogen-based Economy Dr. Antonio OLIEIMADA KBC LIK	NL Exergy Based Conceptual Design of Hybrid Electrolyser Systems for PtX Faisal SEDEQI , German Aerospace Centre	Describing Hydrophobic Interactions Using Heterosegmented PC-SAFT – Application to Surfactants	
			(DLR), Germany		
11:50	12:00		Break		
SESS	IONS	Polymers III	Machine Learning II (the James Clark Maxwell's session)	Electrolytes I - sponsored by IFPEN	
		Chair: Walter Chapman	Chair: Gabriele Sadowski	Chair: Christoph Held	
12:00	12:20	Direct shock simulations of several polymer melts Claire LEMARCHAND , Université Paris-	Coarse Grained Molecular Simulations of Polymers using Machine Learned Potentials	EleTher JIP: A quaternary system for investigating the effect of acid-base equilibria on volatilities Dr.Jean-Charles DE HEMPTINNE , IFPEN.	
		Saclay, France	Dr. Eleonora RICCI , Univ. of Edinburgh, UK	France	
12:20	12:40	Modeling Swelling and Drying in Electronic Encapsulation Stefan WAGNER , Graz Univ. of Technology, Austria	Differentiable Equations of State for Machine Learning Thermodynamic- Property Prediction Michael GADALOFF , Imperial College London, UK	for esterification reactions based on ePC- SAFT: Application to levulinic acid Marcel KLINKSIEK , TU Dortmund, Germany	
12:40	13:00	Solubility of Organic Fluid Mixtures in Glassy Polymers	Modeling Transport Properties of Aqueous Potassium Hydroxide with Machine Learning Molecular Force Fields	lon-pairing in BiMSA ePPC-SAFT for aqueous and mixed-solvent alkali halide solution	
		Lorenzo MERLONGHI , Univ. of Bologna, Italy	Dr. Jelle LAGERWEIJ , Delft Univ. of Technology, NL	Abtin RAEISPOUR SHIRAZI, IFPEN, France	
13:00	14:00		Lunch		

Tuesday Afternoon

Tuesday 11 June Afternoon					
SESS	IONS	Phase equilibria III (the Lord Kelvin's session)	New trends in Ionic liquids	New models (the Robert Stirling's session)	
		Chair: Cara Schwarz Pentland East	Chair: Sabine Enders Prestonfield	Chair: Eirini Karakatsani Pentland West	
		Phase equilibria of clathrate hydrates of carbon dioxide and different substrates-	Acidic aqueous biphasic systems: a novel approach for recovering critical metals from e-waste	Multilayer Quasichemical Model of a Nonuniform Fluid Mixture that Contains Chainlike and Associating Species	
14:00	14:20	Prof. Catinca SECUIANU, National Univ. of Science and Technology Politehnica Bucharest, Romania	Prof. Helena PASSOS , Univ. of Porto, Portugal	Prof. Alexey VICTOROV , St. Petersburg State Univ., Russian Federation	
14:20	14:40	A general Gibbs free energy minimization algorithm for modelling solid-fluid equilibria involving miscible solids, pure solids, hydrates, and cocrystals	Choline-Amino Acid Ionic Liquids: from synthesis to application in ATPS	First-order perturbation theory using a short-range Lennard-Jones fluid reference	
		Wen Hwa SIAH , ARMINES Mines Paris - PSL,France	Pedro VELHO, University of Porto, Portugal	Dr.Andrij TROKHYMCHUK, Univ. of Ljubljana, Slovenia	
14:40	15:00	Solid-Liquid Equilibria of Selected Ternary Systems Containing Diphenyl Carbonate, Alcohol, Dialkyl Carbonate, and Phenol	Eutectic solvents for fish skin valorization. From fundamentals to application	A general method for calculating metastable fluid properties	
		Prof. Hiroyuki MATSUDA , Nihon University, Japan	Cristina GALLEGO, Univ. de Santiago de Compostela, Spain	Dr. Ailo AASEN , SINTEF Energy Research, Norway	
15:00	15:20	Tunable alkali-aluminosilicates geopolymers and composites as solid adsorbents for CO ₂ capture applications	Development of a hybrid platform for molecular design and selection of Ionic Liquids for CO ₂ capture and conversion	Cluster-Based Discrete Modeling Approach for Activity Coefficients of Molecular Liquids	
		Prof. Matteo MINELLI , Univ. of Bologna, Italy	Dr. Felipe PERDOMO , Univ. of Edinburgh, UK	Prof. Thomas WALLEK , Graz Univ. of Technology, Austria	
	L5:20 15:50 Coffee Break				
15:20	15:50		Coffee Break		
15:20 SESS	15:50	Machine Learning II	Molecular Design: porous & crystalline materials	Electrolytes II	
15:20 SESS	15:50 IONS	Machine Learning II Chair: Joao Coutinho Pentland East	Corree Break Molecular Design: porous & crystalline materials Chair: Matteo Minelli Prestonfield	Electrolytes II Chair: Jean-Charles de Hemptinne Pentland West	
15:20 SESS 15:50	15:50 IONS 16:10	Machine Learning II Chair: Joao Coutinho Pentland East Estimating Gas Sorption in Polymeric Membranes from The Molecular Structure: A Machine Learning Based Group Contribution Method For The Non- Equilibrium Lattice Fluid Model (ML-GC-	Corree Break Molecular Design: porous & crystalline materials Chair: Matteo Minelli Prestonfield In-silico approach to screen new nanoporous materials for urea capture from spent dialysate	Electrolytes II Chair: Jean-Charles de Hemptinne Pentland West Overview of the ERC project: "New Paradigm in Electrolyte Thermodynamics"	
15:20 SESS 15:50	15:50 IONS	Machine Learning II Chair: Joao Coutinho Pentland East Estimating Gas Sorption in Polymeric Membranes from The Molecular Structure: A Machine Learning Based Group Contribution Method For The Non- Equilibrium Lattice Fluid Model (ML-GC- NELF) Hasan ISMAEEL , Univ. of Edinburgh, UK	Corree Break Molecular Design: porous & crystalline materials Chair: Matteo Minelli Prestonfield In-silico approach to screen new nanoporous materials for urea capture from spent dialysate Thomas FABIANI, Univ. of Edinburgh, UK	Electrolytes II Chair: Jean-Charles de Hemptinne Pentland West Overview of the ERC project: "New Paradigm in Electrolyte Thermodynamics" Prof. Georgios KONTOGEORGIS, TU Denmark	
15:20 SESS 15:50	15:50 IONS 16:10 16:30	Machine Learning II Chair: Joao Coutinho Pentland East Estimating Gas Sorption in Polymeric Membranes from The Molecular Structure: A Machine Learning Based Group Contribution Method For The Non- Equilibrium Lattice Fluid Model (ML-GC- NELF) Hasan ISMAEEL , Univ. of Edinburgh, UK Machine learning paradigm for parametrizing soft-SAFT molecular models for pure refrigerants	Molecular Design: porous & crystalline materials Chair: Matteo Minelli Prestonfield In-silico approach to screen new nanoporous materials for urea capture from spent dialysate Thomas FABIANI, Univ. of Edinburgh, UK Designing selective nanoporous materials for VOC capture applied to breath diagnostics: insights from simulation and experiments	Electrolytes II Chair: Jean-Charles de Hemptinne Pentland West Overview of the ERC project: "New Paradigm in Electrolyte Thermodynamics" Prof. Georgios KONTOGEORGIS, TU Denmark Analysing Helmholtz energy contributions of model electrolyte systems using molecular simulations	
15:20 SESS 15:50	15:50 IONS 16:10 16:30	Machine Learning II Chair: Joao Coutinho Pentland East Estimating Gas Sorption in Polymeric Membranes from The Molecular Structure: A Machine Learning Based Group Contribution Method For The Non- Equilibrium Lattice Fluid Model (ML-GC- NELF) Hasan ISMAEEL, Univ. of Edinburgh, UK Machine learning paradigm for parametrizing soft-SAFT molecular models for pure refrigerants Dr. Ismail ALKHATIB, Khalifa Univ. of Science and Technology, UAE	Corree Break Molecular Design: porous & crystalline materials Chair: Matteo Minelli Prestonfield In-silico approach to screen new nanoporous materials for urea capture from spent dialysate Thomas FABIANI, Univ. of Edinburgh, UK Designing selective nanoporous materials for VOC capture applied to breath diagnostics: insights from simulation and experiments Dr.Scott BOBBITT, Sandia National Lab., USA	Electrolytes II Chair: Jean-Charles de Hemptinne Pentland West Overview of the ERC project: "New Paradigm in Electrolyte Thermodynamics" Prof. Georgios KONTOGEORGIS, TU Denmark Analysing Helmholtz energy contributions of model electrolyte systems using molecular simulations Anja REIMER, Univ. of Stuttgart, Germany	
15:20 SESS 15:50 16:10 16:30	15:50 IONS 16:10 16:30 16:50	Machine Learning II Chair: Joao Coutinho Pentland East Estimating Gas Sorption in Polymeric Membranes from The Molecular Structure: A Machine Learning Based Group Contribution Method For The Non- Equilibrium Lattice Fluid Model (ML-GC- NELF) Hasan ISMAEEL, Univ. of Edinburgh, UK Machine learning paradigm for parametrizing soft-SAFT molecular models for pure refrigerants Dr. Ismail ALKHATIB, Khalifa Univ. of Science and Technology, UAE Neural Network-Based Tensor Completion: Advancing Predictions of Activity Coefficients and Beyond Tobias AVERBECK, TU Dortmund, Germany	Molecular Design: porous & crystalline materials Chair: Matteo Minelli Prestonfield In-silico approach to screen new nanoporous materials for urea capture from spent dialysate Thomas FABIANI, Univ. of Edinburgh, UK Designing selective nanoporous materials for VOC capture applied to breath diagnostics: insights from simulation and experiments Dr.Scott BOBBITT, Sandia National Lab., USA On the formation of colloidal clathrates and diamond crystals- Dr.Łukasz BARAN, Univ. Lublin, Poland	Electrolytes II Chair: Jean-Charles de Hemptinne Pentland West Overview of the ERC project: "New Paradigm in Electrolyte Thermodynamics" Prof. Georgios KONTOGEORGIS, TU Denmark Analysing Helmholtz energy contributions of model electrolyte systems using molecular simulations Anja REIMER, Univ. of Stuttgart, Germany Applying open COSMO-RS to Electrolyte Systems from Infinite Dilution to the Ionic Liquid State Dr. Simon MÜLLER, TU Hamburg, Germany	
15:20 SESS 15:50 16:10 16:30	15:50 IONS 16:10 16:30 16:50 17:00	Machine Learning II Chair: Joao Coutinho Pentland East Estimating Gas Sorption in Polymeric Membranes from The Molecular Structure: A Machine Learning Based Group Contribution Method For The Non- Equilibrium Lattice Fluid Model (ML-GC- NELF) Hasan ISMAEEL, Univ. of Edinburgh, UK Machine learning paradigm for parametrizing soft-SAFT molecular models for pure refrigerants Dr. Ismail ALKHATIB, Khalifa Univ. of Science and Technology, UAE Neural Network-Based Tensor Completion: Advancing Predictions of Activity Coefficients and Beyond Tobias AVERBECK, TU Dortmund, Germany	Corree Break Molecular Design: porous & crystalline materials Chair: Matteo Minelli Prestonfield In-silico approach to screen new nanoporous materials for urea capture from spent dialysate Thomas FABIANI, Univ. of Edinburgh, UK Designing selective nanoporous materials for VOC capture applied to breath diagnostics: insights from simulation and experiments Dr.Scott BOBBITT , Sandia National Lab., USA On the formation of colloidal clathrates and diamond crystals- Dr.Łukasz BARAN, Univ. Lublin, Poland	Electrolytes II Chair: Jean-Charles de Hemptinne Pentland West Overview of the ERC project: "New Paradigm in Electrolyte Thermodynamics" Prof. Georgios KONTOGEORGIS, TU Denmark Analysing Helmholtz energy contributions of model electrolyte systems using molecular simulations Anja REIMER, Univ. of Stuttgart, Germany Applying open COSMO-RS to Electrolyte Systems from Infinite Dilution to the Ionic Liquid State Dr. Simon MÜLLER, TU Hamburg, Germany	
15:20 SESS 15:50 16:10 16:30 16:50 17:00	15:50 IONS 16:10 16:30 16:50 17:00 18:30	Machine Learning II Chair: Joao Coutinho Pentland East Estimating Gas Sorption in Polymeric Membranes from The Molecular Structure: A Machine Learning Based Group Contribution Method For The Non- Equilibrium Lattice Fluid Model (ML-GC- NELF) Hasan ISMAEEL, Univ. of Edinburgh, UK Machine learning paradigm for parametrizing soft-SAFT molecular models for pure refrigerants Dr. Ismail ALKHATIB, Khalifa Univ. of Science and Technology, UAE Neural Network-Based Tensor Completion: Advancing Predictions of Activity Coefficients and Beyond Tobias AVERBECK, TU Dortmund, Germany	Molecular Design: porous & crystalline materials Chair: Matteo Minelli Prestonfield In-silico approach to screen new nanoporous materials for urea capture from spent dialysate Thomas FABIANI, Univ. of Edinburgh, UK Designing selective nanoporous materials for VOC capture applied to breath diagnostics: insights from simulation and experiments Dr.Scott BOBBITT, Sandia National Lab., USA On the formation of colloidal clathrates and diamond crystals- Dr.tukasz BARAN, Univ. Lublin, Poland Break Poster session II	Electrolytes II Chair: Jean-Charles de Hemptinne Pentland West Overview of the ERC project: "New Paradigm in Electrolyte Thermodynamics" Prof. Georgios KONTOGEORGIS, TU Denmark Analysing Helmholtz energy contributions of model electrolyte systems using molecular simulations Anja REIMER, Univ. of Stuttgart, Germany Applying open COSMO-RS to Electrolyte Systems from Infinite Dilution to the Ionic Liquid State Dr. Simon MÜLLER, TU Hamburg, Germany	
15:20 SESSI 15:50 16:10 16:30 16:50 17:00 18:30	15:50 IONS 16:10 16:30 16:50 17:00 18:30 19:20	Machine Learning II Chair: Joao Coutinho Pentland East Estimating Gas Sorption in Polymeric Membranes from The Molecular Structure: A Machine Learning Based Group Contribution Method For The Non- Equilibrium Lattice Fluid Model (ML-GC- NELF) Hasan ISMAEEL , Univ. of Edinburgh, UK Machine learning paradigm for parametrizing soft-SAFT molecular models for pure refrigerants Dr. Ismail ALKHATIB, Khalifa Univ. of Science and Technology, UAE Neural Network-Based Tensor Completion: Advancing Predictions of Activity Coefficients and Beyond Tobias AVERBECK, TU Dortmund, Germany	Molecular Design: porous & crystalline materials Chair: Matteo Minelli Prestonfield In-silico approach to screen new nanoporous materials for urea capture from spent dialysate Thomas FABIANI, Univ. of Edinburgh, UK Designing selective nanoporous materials for VOC capture applied to breath diagnostics: insights from simulation and experiments Dr.Scott BOBBITT, Sandia National Lab., USA On the formation of colloidal clathrates and diamond crystals- Dr.Łukasz BARAN, Univ. Lublin, Poland Break Break	Electrolytes II Chair: Jean-Charles de Hemptinne Pentland West Overview of the ERC project: "New Paradigm in Electrolyte Thermodynamics" Prof. Georgios KONTOGEORGIS, TU Denmark Analysing Helmholtz energy contributions of model electrolyte systems using molecular simulations Anja REIMER, Univ. of Stuttgart, Germany Applying open COSMO-RS to Electrolyte Systems from Infinite Dilution to the lonic Liquid State Dr. Simon MÜLLER, TU Hamburg, Germany	
15:20 SESS 15:50 16:10 16:30 16:30 16:50 17:00 18:30 19:20	15:50 IONS 16:10 16:30 16:50 17:00 18:30 19:20 23:00	Machine Learning II Chair: Joao Coutinho Pentland East Estimating Gas Sorption in Polymeric Membranes from The Molecular Structure: A Machine Learning Based Group Contribution Method For The Non- Equilibrium Lattice Fluid Model (ML-GC- NELF) Hasan ISMAEEL, Univ. of Edinburgh, UK Machine learning paradigm for parametrizing soft-SAFT molecular models for pure refrigerants Dr. Ismail ALKHATIB, Khalifa Univ. of Science and Technology, UAE Neural Network-Based Tensor Completion: Advancing Predictions of Activity Coefficients and Beyond Tobias AVERBECK, TU Dortmund, Germany	Molecular Design: porous & crystalline materials Chair: Matteo Minelli Prestonfield In-silico approach to screen new nanoporous materials for urea capture from spent dialysate Thomas FABIANI, Univ. of Edinburgh, UK Designing selective nanoporous materials for VOC capture applied to breath diagnostics: insights from simulation and experiments Dr.Scott BOBBITT, Sandia National Lab., USA On the formation of colloidal clathrates and diamond crystals- Dr.Łukasz BARAN, Univ. Lublin, Poland Break Poster session II Break	Electrolytes II Chair: Jean-Charles de Hemptinne Pentland West Overview of the ERC project: "New Paradigm in Electrolyte Thermodynamics" Prof. Georgios KONTOGEORGIS, TU Denmark Analysing Helmholtz energy contributions of model electrolyte systems using molecular simulations Anja REIMER, Univ. of Stuttgart, Germany Applying open COSMO-RS to Electrolyte Systems from Infinite Dilution to the Ionic Liquid State Dr. Simon MÜLLER, TU Hamburg, Germany	

Wednesday Morning

Plenary Talks - Pentland Theatre					
	Chairs: Ana Soto, Jean-Noel Jaubert				
08:30	09:15	Measurement of Vapour Liquid Equilibrium Thermodynamic Properties Until the Critical Point and modelling - Prof. Cristophe COQUELET , IMT Mines Albi, France			
09:15	10:00	Utilizing the Molecular Simulation Design Fram Prof. Clare McCABE , He	ework (MoSDeF) to Screen Soft Matter Systems riot-Watt University, UK		
10:00	10:30	Coffee	Break		
SESS	IONS	Pharmaceutical applications Statistical Mechanics - Sponsored by the RSC			
		Chair: Ilya Polishuk	Chair: Peter Cummings		
		Prestonfield	Pentland		
10:30	10:50	Water in glassy carbohydrates: thermodynamic analysis and molecular dynamics simulations Prof. Vitaly KOCHERBITOV , Malmö University, Sweden	Keynote - Computational Design of Peptides as Sensors and		
10:50	11:10	Influence of pH and Salts on the Solubilities of Active Pharmaceutical Ingredients			
		Espen FRITSCHKA, TU Dortmund, Germany	Prof. Carol HALL, North Carolina State Univ., USA		
11:10	11:30	Prediction of API solubility: an overview of the recent developments of the SAFT-g Mie approach	Runaway Transition in Irreversible Polymer Condensation with Cyclisation		
		Dr. Thomas BERNET , Imperial College London, UK	Dr. Maria PANOUKIDOU , Univ. of Edinburgh, UK		
11:30	11:40	Bro	eak		
		Water & aqueous solutions (the John Leslie's session)	Phase Equilibria IV (the William Rankine's session)		
5555	IONS	Chair: Giulio Santori	Chair: Clare McCabe		
		Prestonfield	Pentland		
11:40	12:00	Prediction of water anomalous properties by introducing the two-state theory in SAFT	Application of DFT calculations in the correlation of phase equilibria: estimating non-randomness factors		
		Dr. Nefeli NOVAK , TU Denmark	Prof. Eugénia A. MACEDO, Univ. de Porto, Portugal		
12:00	12:20	Maximizing solubilities in aqueous solutions	MCA+PZ and MCA+AMP aqueous solutions: CO ₂ solubility experiments and modelling		
		Prof. Joao COUTINHO, Univ. of Aveiro, Portugal	Dr. Fragkiskos TZIRAKIS, CeRTH, Greece		
12:20	12:40	The shape of water – how cluster formation explains the hydrophobic effect	Crystallization risk of aromatic compounds in LNG production: Part III: the solubility of o-xylene in methane-rich mixtures down to cryogenic temperatures		
		Dr. Martin ANDERSSON, King Fahd Univ., Saudi Arabia	Dr. Salem HOCEINI, ARMINES MinesParis PSL, France		
12:40	13:00	Conclusive remarks, PPE	PPD 2025 and ESAT 2026		
13:00	14:00	Lu	nch		

List of Posters

Poster Session 1 - Monday, 9 June, 17:00-18:30			
Poster Board	Title and Authors	ExOrdo ID	
P1	Development of Lorentz cycle power generation for low grade heat source utilization Keigo Matsuda, Yota Fujii, Ryosuke Akimoto, Masaru Nakaiwa Nagoya University, Japan	56	
P2	Design of a Tesla Turbine: Transcritical CO ₂ Two-Phase Flow Analysis <u>Maria Laura Canteros</u> , Michal Schmirler, Jiří Polanský Czech Technical University in Prague, Czech Republic	160	
Р3	The performance of Ionic Liquid / water mixtures as working fluids in absorption refrigeration systems Yicang Guo, Yan Ding, <u>Patrice Paricaud</u> , Jinlong Li ENSTA Paris, France	141	
P4	Exploring zwitterionic ionic-liquid-like compounds (ZILs) for thermoreversible separation and biocatalysis Helena Passos, Ana M. Ferreira, João A.P. Coutinho University of Porto, Porto, Portugal	252	
Р5	Tris(2-hydroxyethyl)ammonium based protic "ionic liquids" Alexandra M. Cáceres, Alba Somoza, Carlos A. Pena, <u>Ana Soto</u> , Emilia Tojo <i>Universidade de Santiago de Compostela, Spain</i>	111	
P6	Solubility of collagen-forming amino acids in 1-ethyl-3-methylimidazolium propionate Alexandra M. Cáceres, Carlos A. Pena, Eva Rodil, <u>Ana Soto</u> Universidade de Santiago de Compostela, Spain	112	
P7	soft-SAFT Molecular Model for DBU based CO ₂ Binding organic liquids Solvents for CO ₂ Capture using new experimental data Safique Anwer, <u>Ismail Alkhatib</u> , Lourdes F. Vega, Inas AlNashef Khalifa University of Science and Technology, United Arab Emirates	208	
P8	Identifying novel aqueous amines for CO ₂ capture using molecular modeling Ismail Alkhatib, Fareeha Shadab, Lourdes F. Vega Khalifa University, Abu Dhabi, United Arab Emirates	229	
Р9	Developing the s-SAFT-γ Mie Equation of State Toward Nonaqueous Alkanolamine-Based Carbon Capture Alex Schulze-Hulbe, Andries Burger, <u>Jamie Cripwell</u> Stellenbosch University, South Africa	182	
P10	Prediction of the excess enthalpy in binary mixtures through the use of probabilistic matrix factorisation Garren Hermanus, Tobias Louw, <u>Jamie Cripwell</u> Stellenbosch University, South Africa	184	
P11	Utilizing AI and molecular dynamics for property estimation of CO ₂ -loaded solvents Evangelos Tsochantaris, <u>Lingfeng Gui</u> , Kieran Nehil-Puelo, Clare McCabe, Peter Cummings Heriot-Watt University, United Kingdom	145	
P12	Evaluation of Phase Equilibria for Mixtures Containing Environmentally Benign Solvents Using ASOG Method Katsumi Tochigi, Hiroyuki Matsuda, Kiyofumi Kurihara Nihon University, Japan	108	
P13	Proposing predictive hybrid group contribution + artificial intelligence models for the heat capacity of Deep Eutectic Solvents Reza Haghbakhsh, Khojaste Khedri, AhmadReza Roosta, Ana Rita Duarte, Sona Raeissi Universidade Nova de Lisboa, Portugal	84	
P14	High pressure CO ₂ and methane solubility in the DES (2 menthol + 1 lauric acid) Reza Haghbakhsh, Elham Ebrahimzadeh, Mehdi Keshtkar, Ana Rita Duarte, Alexandre Paiva, Sona Raeissi, Alireza Shariati Universidade Nova de Lisboa, Portugal	85	
P15	Pressure-volume-temperature-composition relations for CO ₂ and carboxylic acid based deep eutectic solvents <u>Yuto Ainai</u> , Chiaki Yokoyama, Daisuke Kodama Nihon University, Japan	45	
P16	Assessing the Influence of Parametrization Strategies on the Evaluation of Extraction-based Processes Janik Hense, William Graf von Westarp, Andreas Jupke RWTH Aachen University, Germany	227	

P17	Preventing Contamination Related to Global and Climate Change <u>Ana B. Pereiro</u> , María C. Naranjo, Jhon A. Pulido, Didier M. Rodríguez, Julio E. Sosa, João Araújo NOVA University Lisbon, Portugal	161
P18	Extraction of per-fluorinated alkyl substances using ionic liquids and porous solid matrices <u>Ana B. Pereiro</u> , María C. Naranjo, Inês Matos, Maria Bernardo, Isabel M. Fonseca, João Araújo NOVA University Lisbon, Portugal	163
P19	Ionic-liquid-based aqueous biphasic systems for platinum group metals recovery <u>Flavia N. Braga</u> , Filipe Hobi Sosa, Nicolas Schaeffer, Helena Passos, Joao Coutinho University of Aveira, Portugal	197
P20	Model-based solvent screening: Modeling of multicomponent mass transfer in liquid-liquid extraction columns Lukas Polte, Andreas Jupke RWTH Aachen University, Germany	83
P21	Bioprivileged Ionic Liquids for Biologics Purification and Drug Formulation João Araújo, Sara Carvalho, Joana Bastos, Ana B. Pereiro NOVA University Lisbon, Portugal	211
P22	Adsorption Processes for the Reclamation of Single-Component Refrigerants from Refrigerant Blends using BPL Activated Carbon João Araújo, Julio E. Sosa, Rui Ribeiro, José Paulo Mota, Ana B. Pereiro NOVA University Lisbon, Portugal	173
P23	A Computational Approach to Assess the Flammability of Refrigerant Mixtures using Artificial Neural Networks Strategies Carlos Albá, Ismail Alkhatib, Lourdes F. Vega, Fèlix Llovell Universitat Rovira i Virgili, Spain	190
P24	An artificial neural network approach to predict the solubility of hydrofluorocarbon refrigerants in ionic liquids Gabriel Zarca, Fernando Pardo, Ane Urtiaga Universidad de Cantabria, Spain	80
P25	A compilation of hydrofluorocarbons and hydrofluoroolefins solubility data in polymer membranes Sergio V. Gutiérrez-Hernández, Fernando Pardo, Gabriel Zarca, <u>Ane Urtiaga</u> Universidad de Cantabria, Spain	176
P26	Modelling thermodynamics for solvent-based plastic recycling Adam Bouz, Jakub Klimosek, Lenka Krajáková, Alexandr Zubov, Juraj Kosek University of Chemistry and Technology. Prague, Czech Republic	115
P27	Modelling Gas and Vapor Sorption in Copolymer Membranes: A Predictive Approach Using PC-SAFT & the Dry Glass Reference Perturbation Theory Hasan Ismaeel, Eleonora Ricci, Bennett Marshall, Maria Grazia De Angelis The University of Edinburgh, United Kingdom	139
P28	Modelling solubility of CO ₂ in rubbery and glassy polymers with the SAFT-γ Mie group-contribution approach Louis Nguyen, Michele Valsecchi, Amparo Galindo, George Jackson, Christopher Tighe Imperial College London, United Kingdom	118
P29	Process synthesis of membrane-adsorption multi-stage CO ₂ Separation by using Statistical Model <u>Yota Fujii</u> , Masaru Nakaiwa, Keigo Matsuda Nagoya University, Japan	107
P30	Multiscale High-Throughput Screening of Polymer Membranes for Ethanol-Water Dehydration Andres Ordorica, Co Quach, Arun Sridhar, Kane Jennings, Peter Cummings, <u>Clare McCabe</u> Heriot-Watt University, United Kingdom	270
P31	Comprehensive Modelling Strategy for Gas Transport in Polymers: Analysis of Swelling and Non-Swelling Agents at High Pressures Roberta Di Carlo, Eleonora Ricci, <u>Matteo Minelli</u> University of Bologna, Italy	61
P32	Solubility and swelling calculations in semi-crystalline polymers using the PC-SAFT equation of state Sonia Alejandra Diaz Urrea, Xavier Lefebvre, Martha Hajiw, jeancharles dehemptinne, Eric Favre IFPEN, France	95
P33	Utilization of experimental methods: mass transfer and sorption equilibria of small gaseous penetrants in polyolefins Jakub Klimosek, Lenka Krajakova, Klara Jindrova, Alexandr Zubov, Juraj Kosek University of Chemistry and Technology, Prague, Czech Republic	277

	Modelling of shear-induced mixing behavior of polymer blends	
P34	Sabine Enders, <u>Jonas Jaske</u>	21
	KIT, Germany	
	Molecular insight into the photonastic phenomenon: study of the coupling between the photochemical	
P35	reaction and the intramolecular relaxation of the polymer	60
	Marta Serrano Martínez, Orlando Villegas, Nicolas Pineau, Claire Lemarchand, Aurélie Perrier	
	Ecosystems as onen thermodynamic systems: Entrony production as a measure of carbon canture and	
	utilisation	
P36	Julia Stovanova. Christo Georgiev. Plamen Nevtchev	213
	National Institute of Meteorology and Hydrology, Bulgaria	
	Thermodynamics Aspect of CO ₂ Transport: Phase Equilibrium and Transport Properties	
P37	Mohammad Hassan Mahmoodi, Antonin Chapoy, Pezhman Ahmadi, Rod Burgass	121
	Heriot-Watt University, United Kingdom	
	Evaluating the EoS-based modelling of the CO_2 -water equilibrium for CO_2 storage	
P38	Sonja Smith, Erling Stenby, Wei Yan	196
	Technical University of Denmark, Denmark	
	Atomistic Simulations of Active Brazing	
P39	Michael Chandross, Ian Winter, Eric Rothchild, Jeffrey Horner, Jaideep Ray, Edward Arata, Ping Lu, Scott Roberts,	100
	David Kemmenoe, Anthony Miciwaster, Anne Grillet	
	Molecular Modeling and Prediction of the Physicochemical Properties of Carbohydrates and Polyols	
P40	Maria Fontenele, Claude-Gilles Dussap, Baptiste Boit, Vincent Dumouilla	101
	Institut Pascal, France	
	Structure and Dynamics of Fluids Confined in Nanometer-sized Porous Silica	
P41	Marc Högler, Niels Hansen	68
	University of Stuttgart, Germany	
	Relation between double layer structure, capacitance and surface tension in electrowetting of graphene and	
P42	aqueous electrolytes Deale Carbona, Ziwan Wai, Jachus Elliott, Athanasias Danadarakis, Dahart Drufa	7
	<u>Paola Carbone</u> , Zixuan wei, Joshua Elliott, Athanasios Papaderakis, Robert Dryle	
	Ffects of mobile framework cations on the adsorption isotherm of light gases in zeolites using classical Density	
	Functional Theory	
P43	Tiong Wei Teh, Joachim Groß, Niels Hansen	69
	University of Stuttgart, Germany	
P44	Electrical Double Layer and the Zeta Potential at the Quartz Interface Via Molecular Dynamics Simulations	99
	Felipe Mourao Coelho, Jan Vinogradov, Jos Derksen, Luis Fernando Mercier Franco	
	Buling molecular mechanisms over the anisotropy of confined fluids transport coefficients	
P45	Nikolas Souza, Cvril Picard, Benoit Coasne, Luís Fernando Mercier Franco	105
	Universidade Estadual de Campinas, Brazil	
	Exploring the Potential of Hierarchical Zeolite-Templated Carbons for High-Performance Li-O2 Batteries:	
P46	Multiscale Modeling Approach	198
	Khizar Hayat, Daniel Bahamon, Ahmed AlHajaj, <u>Lourdes F. Vega</u>	150
	Khalifa University of Science and Technology, United Arab Emirates	
	Implications of the Interfacial Tension on Brine/H ₂ /CO ₂ Systems for Underground Hydrogen Storage: A	
P47	Notecular Dynamics Study	200
	Khalifa University of Science and Technology. United Arab Emirates	
	Applying Data Version Control to Molecular Simulations	
P48	Marcelle Spera, Jan Range, Mikhail Rozhkov, Jürgen Pleiss, Niels Hansen	44
	University of Stuttgart, Germany	
	An Intelligent Decision System for the Efficient Prediction of Thermodynamic Properties with a Successive	
P49	Improvement Framework	11
	Iniversity of Strathclyde, Glasgow, United Kingdom	
	Extending the Domain of Applicability of Group-Contribution Models for Pure Component Properties	
P50	Yitong Yang, Adem Aouichaoui, <u>Simon Müller</u> , Jens Abildskov	217
	Hamburg University of Technology, Germany	

P51	Predicting Solvation and Dielectric Properties of Mixtures Using Polarization-Consistent Force Fields Miguel Jorge, Zoe Macpherson, Cecilia Barrera, Leo Lue, Jose Gomes University of Strathclyde, Glasgow, United Kingdom	131
P52	Transport Properties of Binary Mixtures from Equilibrium MD Simulations using TAMie force field <u>Thorsten Markert</u> , Gernot Bauer, Joachim Gross University of Stuttgart, Germany	199
P53	A Multiscale Molecular Dynamics Study of Skin Lipids Forming the Short-Periodicity Phase Chloe Frame, Parashara Shamaprasad, Christopher Iacovella, Annette Bunge, Clare McCabe Heriot-Watt University, United Kingdom	236
P54	Encapsulation of anticancer drug Chlormethine inside carbon nanotube from a thermodynamic point of view Maryam Zarghamidehaghani, Maria Grazia De Angelis The University of Edinburgh, United Kingdom	301
P55	Thermodynamic Modeling for Nucleic Acid Therapeutic Manufacturing <u>Pavan K. Inguva</u> , Nathan M. Stover, Vico Tenberg, Pierre Walker, Maria del Carme Pons Royo, Allan S. Myerson, Richard D. Braatz <i>Massachusetts Institute of Technology, United States</i>	267

Poster Locations:

Pentland Corridor

Concourse

Holyrood room

Salisbury room

Poster Session 2 - Tuesday, 11 June, 17:00-18:30					
Poster Board	Title and Authors	ExOrdo ID			
	Preparation and Characterization of Biomaterials for Pollutant Removal				
P56	Ana B. Pereiro, Inês Matos, Maria Bernardo, Isabel M. Fonseca, João Araújo, Jhon A. Pulido	165			
	NOVA University Lisbon, Portugal				
	Extraction and quantification of emerging pollutants in environmental water				
P57	Ana B. Pereiro, Didier M. Rodríguez, María C. Naranjo, Maria João Nunes, João Araújo	166			
	NOVA University Lisbon, Portugal				
	A COSMO-RS based approach for predicting the solubility of vanillin in aqueous mixtures				
P58	Isabella W. Cordova, Gabriel Teixeira, Dinis O. Abranches, Simão P. Pinho, Olga Ferreira, <u>Joao Coutinho</u>	89			
	University of Aveiro, Portugal				
	Enhancing Terpene and Terpenoid Extraction from Essential Oils using Ionic Liquids as Entrainers				
P59	Mónia A.R. Martins, Aline Zambom, Sérgio Vilas-Boas, Joao Coutinho, Olga Ferreira, Simão P. Pinho	91			
	Instituto Politécnico de Bragança, Bragança, Portugal				
	Exploring the synergism of hydrotrope-based DESs for improved kraft lignin aqueous dissolution				
P60	Filipe Hobi Sosa, Dinis O. Abranches, André Miguel da Costa Lopes, Mariana Conceição da Costa, <u>Joao Coutinho</u>	194			
	University of Avoira Doutvool				
	Onversity of Aveno, Pontagan Modelling the solid-liquid solubility of amine acids and eligenentides and their speciation under pH shanges				
	using the SAFT-y Mie group-contribution framework				
P61	Ahmed Alvazidi, Feline Perdomo, Shubbani Paliwal, Thomas Bernet, Andrew I, Haslam, George Jackson, Amnaro	214			
101	Galindo	214			
	Imperial College London, United Kingdom				
	A group-contribution framework to account for the intra-molecular hydrogen bonding in aqueous solutions of				
	glycine homopeptides				
P62	Shubhani Paliwal, Ahmed Alyazidi, Andrew J. Haslam, George Jackson, Amparo Galindo	29			
	Imperial College London, United Kingdom				
	Prediction of the glass temperature of amorphous solid dispersions with an equation of state				
P63	Sabine Enders, <u>Luis Gil-Rojo</u>	26			
	KIT, Germany				
	Properties of the RPM-like electrolyte reference				
P64	Andrij Trokhymchuk, Barbara Hribar-Lee, Roman Melnyk	262			
	University of Ljubljana, Slovenia				
	Prediction of Multi Fluid Helmholz Energy Approximation (MFHEA) EOS Binary Interaction Parameters Using				
P65	Group Contribution Method	67			
105	<u>Mustapha Goni</u> , Antonin Chapoy	07			
	Heriot-Watt University, United Kingdom				
	Clapeyron.jl: An Extensible, Open-Source Thermodynamics Toolkit				
P66	Pierre Walker, Hon-Wa Yew, Andrés Riedemann	75			
	California Institute of Technology, United States				
	Toward Advanced, Predictive Mixing Rules in SAFT Equations of State	76			
P67	<u>Pierre waiker</u>	76			
	Canforma institute of Technology, United States				
DCO	Connuence-Interval and Oncertainty-Propagation Analysis of SAFT-type Equations of State	77			
PUO	California Institute of Technology United States	//			
	A mixed-EoS strategy for multiphase equilibrium problems in energy transition applications				
P69	Michiel Wapperom, Juan Heringer, Dan Nichita, Denis Voskov	109			
	Delft University of Technology, Netherlands				
	Development and management of advanced thermodynamic models with Simulis Thermodynamics				
P70	Edouard Moine, Olivier Baudouin	159			
	Fives ProSim, France				
	Describing compressible mixtures of cross-associating structural isomers				
P71	Gottfried Segner, Patrick Zimmermann, Tim Zeiner	172			
	Graz University of Technology, Austria				
	Ion pairing is hidden inside Poisson-Boltzmann, and lost when deriving the Debye-Hückel equation				
P72	Gabriel Silva, Xiaodong Liang, Georgios M. Kontogeorgis	279			
	Technical University of Denmark, Denmark				

	Measurement and modelling of monomer fraction in solvating systems	
P73	Aiden Burgess, Andries Burger, <u>Jamie Cripwell</u>	181
	Stellenbosch University, South Africa	
	Ammonia based fuel properties calculations in the thermodynamically metastable state	
P74	Martha Hajiw, Chawki Habchi, jeancharles dehemptinne	59
	IFPEN, France	
	Predicting transport properties of simple fluids using an extended FMSA model	
P75	Yapi Ignace, Oriana Haddad, Mounir Ben Amar, Jean-Philippe Passarello	124
	Sorbonne Paris Nord, France	
	Thermodynamic properties (bubble points and density) of H2 in CO2-rich binary systems: experimental	
P76	measurements and model correlations	47
	Franklin Okoro, Friday Junior Owuna, Antonin Chapoy, Pezhman Ahmadi, Rod Burgass	
	Heriot-Watt University, United Kingdom	
	Dynamic evaluation of zeta potential measured for interfaces oil-brine and rock-brine at 25 and 60 °C	
P77	Maiara dos Santos Silva, Verônica de Jesus Pereira, Ladislane dos Santos Bastos, Fábio Pedro Nascimento, Gloria	146
	Meyberg Nunes Costa, Silvio Alexandre Beisl Vieira de Melo	
	Federal University of Bahia, Brazil	
	Effect of Brine Composition in the Interfacial Tension of a Brazilian Pre-salt Oil Sample	
P78	Fabio Pedro Nascimento, <u>Malara dos Santos Silva</u> , Darlien Guimaraes da Silva, Ladisiane dos Santos Bastos,	148
	Veronica de Jesus Pereira, Gioria Meyberg Nunes Costa, Silvio Alexandre Belsi Vieira de Meio	
	Federal University of Bania, Brazin	
	comparison of High temperature simulations of molten saits and other strongly bonded huids with predicted	
P79	Margaret-Ann Withington Kostya Trachenko	178
	Queen Many University of London United Kingdom	
	l iquid—liquid equilibria of ternary systems containing s-caprolactam + water + n-hexadecane/o-xylene	
P80	Izubair Riaz, Petri Uusi-Kyyny, Roshi Dahal, Juha-Pekka Pokki, Ville Alonaeus	123
	Aalto University. Finland	125
	Describing Protonation of Trioctylamine at the Liquid-liquid Interface of Biphasic Systems	
P81	Katharina Maria Saur, Andreas Jupke	232
	RWTH Aachen, Germany	
	Phase Behaviour and Uncertainty Analysis for the Liquid-Liquid Equilibria Present in the Water + Ethanol + n-	
	Hexane System	455
P82	Corine Mouton, <u>Cara Schwarz</u>	155
	Stellenbosch University, South Africa	
	Measurement, modelling and uncertainty propagation of low-pressure phase equilibrium data for 1-alcohols	
D83	and n-alkanes	156
105	Nadine Buitendach, Danielle de Klerk, <u>Cara Schwarz</u>	150
	Stellenbosch University, South Africa	
	The Influence of a Second Alcohol on LLE, VLLE, and VLE Phase Behaviour of (Water + Ethanol + 1-Propanol +	
P84	Entrainer) System	157
	Amanda Erasmus, Danielle de Klerk, <u>Cara Schwarz</u>	
	Stellenbosch University, South Africa	
	High-pressure fluid-phase equilibria: New trends, experimental methods, and systems investigated	
P85		297
	<u>Catinca Secularu</u> , Rait Donrn, Stephanie Peper, Jose Fonseca, Ala Bazyleva	
	National University of Science and Technology Politerinica Bacharesi, Romania	
	mathana transportation	
P86	Nicola Gassies, Marco Campestrini, Paolo Stringari	
	MinesParis PSI France	
	Vapor-Liquid Equilibrium of heptan-2-one + dichloroalkanes mixtures at differente temperatures	
P87		10
	University of Sciences and Technology Houari Boumediene. Algeria	
	Isobaric Vapor-liquid Equilibrium of Water + Polvethylene glycols Measurement and Modeling	
P88	Ouahiba Tafat-Igoudjilene	9
	University of Sciences and Technology Houari Boumediene, Algeria	
	Differential Scanning Calorimetry for Collection of Thermodynamic Phase Equilibria in Small-Scale	
P89	William Graf von Westarp, Janik Hense, Andreas Jupke	230
	PW/TH Aachan University Cormany	

	Vapor-Liquid Equilibrium Measurements and Cubic-Plus-Association (CPA) Modeling of Triethylene Glycol	
500	Systems	4.60
P90	Julia Trancoso, Nicolas von Solms, Georgios Kontogeorgis	168
	Technical University of Denmark, Denmark	
	Bubble Point Pressure Measurement and Prediction of VLE and VLLE for Dimethyl ether - 2-Butoxyethanol and	
	Dimethyl ether - Water - 2-Butoxyethanol at 293.15 K	
P91	Tomoya Tsuji, Masaki Okada, Aoi Enokido, Takaaki Hoshina	40
	Universiti Teknologi Malaysia, Malaysia	
	LLE determination and correlation for green ATPS based on polyethylene glycol (PEG) and polyvinylpyrrolidone	
	(PVP)	
P92	Pedro Velho, Afonso Madaleno, Eugénia A, Macedo	219
	University of Porto, Portugal	
	Hydrogen and air storage in salt caverns: a thermodynamic model for phase equilibrium calculations	
	Abdoul Fattah Kiemdé, Nicolas Ferrando, Jean-Charles De Hemptinne, Yann Le Gallo, Arnaud Reveillère, Juan	
P93	Sebastin Roa Pinto	248
	IFPEN, France	
	Measurement and modelling of VPO and density data for binary aqueous solutions of choline salts at 313.15 K	
P94	Pedro Velho, Eduardo Sousa, Eugénia A. Macedo	222
	University of Porto, Portugal	
	Modeling liquid-liquid equilibria of aqueous surfactant solutions	
P95	Milan Völkel, Gabriele Sadowski	48
	Technical University of Dortmund, Germany	
	Thermal and transport properties of aqueous organic systems	
P96	Eirini Karakatsani, Kim Aasberg-Petersen	192
	Topsoe, Denmark	
	Vapor-liquid-liquid equilibria of binary and ternary aqueous systems containing C6-hydrocarbons	
P97	Salal Hasan Khudaida, Ardila Hayu Tiwikrama, Ming-Jer Lee	27
	National Taipei University of Technology, Taiwan	
	Excess infrared spectra modelling of water/alcohol and water/alcohol/electrolyte systems	
P98	Evangelos Drougkas, Michael Bache, Georgios M. Kontogeorgis, Xiaodong Liang	122
	Technical University of Denmark, Denmark	
	Free Energy of Solutions with Effective Potentials (McMillan-Mayer Level): Einstein's Proof of Van 't Hoff's Law	
500	for Osmotic Pressure	07
P99	Juan Luis Gomez-Estevez	97
	University of Barcelona, Spain	
	Phase equilibrium predictions at low and high pressures with a COSMO-SAC based model	
P100	Nikolaos Prinos, Epaminondas Voutsas	171
	National Technical University of Athens, Greece	
	Estimating the melting temperatures of salts mixtures for recovery precious metal from spent catalytic	
D101	converters	105
P101	Filipe Hobi Sosa, <u>Flavia N. Braga</u> , Helena Passos, Nicolas Schaeffer, Joao Coutinho	195
	University of Aveiro, Portugal	
	Efficient solution of the COSMO-based models	
P102	<u>Wei Yan</u>	224
	Technical University of Denmark, Denmark	
D103	In-silico prediction of toluene/water partition coefficients of APIs using COSMO-RS and Neural Networks	200
P105	Raja Armughan Ahmed, Thomas Nevolianis, Kai Leonhard	200
	RWTH Aachen University, Germany	
	Numerical Investigation of Interfacial Phenomena in Incompressible Multi-Phase Systems	
P104	Matthias Singer, Patrick Zimmermann, Tim Zeiner	183
	Graz University of Technology, Austria	
	Novel Cleaning Procedure for Contact Angle Measurements	
P105	Eva Mühlegger, Kai Langenbach	86
	University of Innsbruck, Austria	

P106	Dynamic Contact Angles from Hydrodynamic Density Functional Theory Benjamin Bursik, Rolf Stierle, Joachim Groß University of Stuttgart, Germany	175
P107	Ab-Initio Study of Reaction Mechanism of Catalysed Phosgenation Raja Armughan Ahmed, Björn Grandke, Kai Leonhard RWTH Aachen University, Germany	274
P108	Combination of PC-SAFT and Taft equation to predict the effect of solvent and reactant on esterification reactions Sindi Baco, Christoph Held, Julien Legros, Sebastien Leveneur TU Dortmund University, Germany	82
P109	Raman Spectroscopy-based Determination of Reaction Rates in Continuous Plug Flow Capillary Reactors with In- situ Extraction <u>Felix Weißenberg</u> , Thorsten Brands, Hans-Jürgen Koß <i>RWTH Aachen University, Germany</i>	237
P110	Nucleation and growth of mixed carbon dioxide and propane hydrates through molecular dynamics simulations Arthur Weidmann, Luís Fernando Mercier Franco, Pedro Pessôa, Amadeu Sum University of São Paulo, Brazil	98

Poster Locations:

Pentland Corridor

Concourse

Holyrood room

Salisbury room